Site Accessibility Statement
Wilfrid Laurier University Faculty of Science
September 22, 2014
 
 
Canadian Excellence

Documents


Laurier Centre for Cognitive Neuroscience

On the Signals Underlying Conscious Awareness of Action

Cognition, In Press
Obhi, S.S., Planetta, P.J. & Scantlebury, J.

published: 2008 | Research publication | Cognition in Action Lab

To investigate whether conscious judgments of movement onset are based solely on pre-movement signals (i.e., premotor or efference copy signals) or whether sensory feedback (i.e., reafferent) signals also play a role, participants judged the onset of finger and toe movements that were either active (i.e., self initiated) or passive (i.e., initiated by the experimenter). Conscious judgments were made by reporting the position of a rotating clock hand presented on a computer screen and were then compared to the actual measured time of movement onset. In line with previous studies, judgment errors were found to be anticipatory for both finger and toe movements. There was a significant difference between judgment errors for active and passive movements, with judgments of active movements being more anticipatory than judgments of passive movements. This is consistent with a pre-movement (from here on referred to as an “efferent”) account of action awareness because premotor and efference copy signals are only present in active movements, whereas the main source of movement information in passive movements is sensory feedback which is subject to time delays of conduction (and hence predicts later judgment times for passive movements). However, judgments of active toe movement onset time were less anticipatory than judgments of active finger movement onset time. This pattern of results is not consistent with a pure efferent account of conscious awareness of action onset – as this account predicts more anticipatory judgments for toe movements compared to finger movements. Instead, the data support the idea that conscious judgments of movement onset are based on efferent (i.e., premotor, efference copy) and reafferent (i.e., feedback from the movement) components.

revised Oct 15/08

View all Laurier Centre for Cognitive Neuroscience documents | View all Faculty of Science documents